Releasing the power to everyone.

Open-Apple
B I

August 1986
Vol. 2, No. 8

ISSN 0885-4017
newstand price: $2.00
photocopy charge per page: $015

A 65802/65816 pre-boot

This month we're going to take an in-depth look at the newest members of
the 6502 family, the 65802 and 65816 microprocessors. The 6502 was at the
heart of the earliest Apple IIs, 1I-Pluses, and Iles. An enhanced version of this
chip, known as the 65C02, is at the heart of lics and enhanced Iles. The
65802 is a direct replacement for these earlier chips—you can plug it into
the 6502 socket of current versions of the Apple II. Meanwhile, Apple could
do worse than to use the 65816 in future additions to the Apple Il line.

Since | didn’t know anything about these newer chips until just a few weeks
ago, | commissioned Michael Fischer, author of 65816/65802 Assembly
Language Programming, published by Osborne/McGraw-Hill, to write an
article for Open-Apple that would introduce the new members of the 6502
family to all of us. His article appears in this issue. Parts of it were taken
directly from his book and appear with the permission of the publisher.

Before [turn things over to Fischer, however, let me supply your human
operating systems with a little pre-boot information to ease your introduction
to the new chips. Some of the stuff I'll cover Fischer also covers in his article,
but it will probably help your understanding to hear the same story twice
from different people.

Those of you who see nothing but obscure computer jargon in this
month’s issue should begin by going back and reading The Magic of Peek
and Pokein the February issue (pages 2.2-2.5). That article is an introduction
to microprocessors, memory, and how computers work. What it doesn't tell
you is that inside old Queen 6502 there are some very special memory
locations called registers. In the 6502 most of these registers can hold any
number between zero and 255—they are one-byte, or 8-bit, registers. The
most special one of all is called the A Register. A stands for action—and this
is where it all takes place.

Other registers in the 6502 are the Xand Y Index Registers, which are used
for counting passes through loops and for accessing series of bytes in
sequence; the Program Counter, which points to the byte that holds the
machine language instruction currently being executed; the Status Register,
which holds some 1-bit flags and switches; and the Stack Register, which
points a crooked finger at our current position in the stack.

The stack, at least in the 6502, is a 256-byte data storage area that is kind
of like a Rolodex flattened out and hung from the ceiling, The first number
you push onto the stack goes on the card at the top. The next number you
push goes onto the next card down, and so on. When you pull a number off
the stack, you always get the last one pushed on. In other words, the last one
on is the first one off. The Stack Register simply keeps track of the push/pull
position inside this 256-byte stack.

Back in February, we learned that the memory inside an Apple II is most
easily thought of as 256 pages, each holding 256 bytes—this makes 256
times 256 or 65,536 total bytes. The 6502 gives the very first of these pages,
known as page zero, some special magical qualities.

Conquering intimidation. If microprocessor chips; their registers,
stacks, and zero pages; their operation codes (instructions) and operands
(the data to be used by the instruction) still intimidate you, it's because the
people who write the original documentation for such chips don't concentrate
hard enough on the words they use to describe things.

Frankly, my own first brushes with the 65816 left me cold and scared. The
chip seemed vastly more complicated than the 6502. But, as Fischer will
showyou later, it's really just a 6502 at the core, surrounded by elegant flesh
that gives it muscle. There are more registers in the 65816, yes, but the A
register, and only the Aregister, is still where all the action is. The stack is still

there, but it's bigger and there are lots more ways to use it. Likewise, page
zero has become bank zero and its magic is more powerful.

After reading Fischer’s article I finally figured out that my fear of this chip
resulted from nothing but the words its designers used to describe it. The
words are fear provoking— the chip itself is not.

The chip has what its designers call an emulation mode, in which it does
what a 6502 can do just exactly like a 6502 does (although, even in this
mode, it can also do lots more). It also has what's called a native mode, in
which it does the things only the 65816 can do.

My problem is that the word “emulation” means a lesser thing acting like a
greater thing. The 65816's designers, however, use the word to mean a
greater thing (a 65816) acting like a lesser thing (a 6502). Thus, when I see
the word, it takes my brain awhile to figure out what they really mean.

This wouldn't be so bad, except the word “native”, which the 65816's
designers use to describe the chip’s enhanced mode, makes me think of a
primitive state, not an advanced state. There are any number of word pairs
(original-enhanced, front-back, outside-inside, startup-operational) that
would have made better names for these modes than emulation-native.

Not even the chip’s designers can change these words now, however,
without creating a Babel. These are the words the designers handed down to
us and these are the words we'll have to use to communicate with. Theyre
the ones Fischer uses and other authors after him will use them, too.

But ifthe designers had worked as hard on the words they used to describe
the chip as they worked on the rest of the chip’s design, it would be an easier
device to learn how to use. Countless hours of confusion and bug-hunting
yetto come would have been avoided.

Ready for more examples? What does “reset” mean? If “set’ means to
make a bit equal to 1 shouldn't "reset’ mean make equal to 1 a second
time? But here "set” means make equal to 1 and “reset” means make equal
to 0. This is an abomination. In the 6502 world we already had a perfectly

I-ﬁ_ ‘ /t.‘\\ ; .J:‘ ‘J}::‘ %y
k& (S ik D0

. M Yy ’ A
S [

- =

You KNOW THE GUY WHO BOUGHT ALL THAT SOFTWARE %

HIS CHECK HAS A WARRANTY THAT SAYS IT's TENDERED

AS 1S AND HAS NO FITNESS ROR ANY FARTICUIAR PURPOSE,
INCLUDING, BUT NOT LIMITED TO, CASHING.

2.50 Open-Apple

good word, “clear;” that meant make equal to zero. If everyone would use the
word pair “clear-set,” rather than “reset-set,” the world would go round a
good deal faster than it does.

Bringing this all up now is like arguing with the umpire. I don't do it
because I think we can ever get better words for the 65816, but because I
hope those of you who design chips (and other things) in the future will give
lots of thought to the words you use to describe them.

The names of the 65816's two operational modes and our rebrush with
set, incidentally, are just a little scare compared to the hand-wetting fear
you'll feel when I tell you the names of some of the new chip’s addressing
modes. Fortunately there’s a good solution to this problem, so don't let the
following list frighten you away. Before I give you the solution, however,
imagine eavesdropping on a discussion between two programmers who are
deciding which of the following addressing modes to use:

direct indirect

direct indexed indirect
direct indirect indexed
direct indirect long

direct indirect leng indexed

Not even certified HeDaPs could keep these straight. But by far the most
confusing thing about the 65816's addressing modes is their names.
Hundreds, maybe thousands, of people will give up on 65816 assembly
language because they can’t make any sense out of them. But it's no wonder
—these names are nearly flat out nonsense to begin with. They are ten times
worse than no names atall. Don't even try to remember or understand them.
Instead, just associate what a command looks like—LDA (d).Y for example
—with where the data is going to come from or go to.

For those of you who are new around assembly language, | should explain
that an “addressing mode” is like a recipe used by a machine language
instruction to find the data it's supposed to work on. For example, the 6502
has an immediate mode, which means the data is right there inside the
program. LDA #3 tells the 6502 to load a 3 into the A Register. Then there’s
absolute mode, which means the data is at a certain address. LDA 3 tells the
6502 to load the A Register with the value in byte 3. And there's indirect
mode, which means the data is at a final address that's being pointed to by an
intermediate address. For example, LDA (3) tells the 6502 to look in bytes 3
and 4 for an address that points to another address, then to load whatever is
at that other address into the A register. Finally, there's indexed mode, which
means the data is at the given address plus the value in the X or Y Register.
LDA 3 /X, for example, gets the data at byte 8 if the X Register holds a 5. All
other addressing modes are nothing but combinations of these four basic

pes.

The 6502 family has a large variety of addressing modes compared to
most other chips. These modes are what give the chip much of its power. The
toughest part of learning assembly language is the week of nightmares you
have to toss and turn through to reconcile these silicon-based addressing
modes with your organic brain. Once you're past that, however, assembly
language programming is a snap.

256 3 = 65816. The first change you notice when moving from the 6502
to the 65816 is that where before you had 256 pages of memory to work with,
you now have 256 banks of memory, each with 256 pages. The 65816 can use
three full bytes— 24 bits—to specify a memory address. This gives it the
ability to directly address 256 times 256 times 256 bytes of memory—
16,777,216 bytes (16 megabytes) in all.

The magical powers of the 6502's page zero are extended to all of bank
zero on the 65816. Likewise, the 6502's 256-byte stack becomes a 65,536-
byte stack.

The A, X, and Y registers on the 65816 can be configured as either 6502-
like 8-bit registers (in which case anew, almost useless, 8-bit register called B
appears) or as 16-bit registers. The A register and the index registers can be
configured independently, so that, for example, X and Y can be 8 bits wide
while A is 16 bits wide. When a register configured for 16-bits accesses
memory, it gets two memory bytes—a full 16-bits—with one whack. For
example, PHA pushes two bytes on the stack if A is configured for 16 bits. LDX
$33 loads both byte $33 and byte $34 into X if X is configured for 16 bits.

The stack register is 16 bits wide on the 65816 —this is how the chip
manages a 65,536 byte stack. The stack always lives in bank zero.

In order to directly access the full 16 megabytes of memory, the 65816 has
two new registers. One is called the Data Bank Register and the other is
called the Program Bank Register. The Program Bank Register always holds
the bank number of the program that is currently executing. You can only
change the Program Bank Register with certain new forms of the JMP and JSR

Yol. 2, No. 8

(and RTS and RTI) instructions. All branches, such as BEQ and BCC, stay
within the current bank, even if it means wrapping from byte $FFFF to byte
$0000 in that bank. Thus the modules of a program can reside in several
different banks, but any single module must be wholly within a single bank.

The Data Bank Register points to the bank that will be used by addressing
modes that specify a two-byte address. There are also addressing modes
that specify three-byte addresses —these can be used to get into any bank
no matter what the contents of the Data Bank Register are.

There are also some addressing modes that use a one-byte address. In the
6502 these were called zero page addressing modes. The one-byte address
was always assumed to be on page zero. On the 65816 these one-byte
modes still exist, but they are called direct modes rather than zero page
because they use a newregister called the Direct Register. This register is 16-
bits wide and is capable of pointing at any byte within bank zero. The one-
byte address that follows the opcode is added to the Direct Register to
calculate a two-byte address within bank zero. Ifyou are using 8-bit Xand Y
registers, you can effectively have multiple 256-byte zero-pages anywhere
within bank zero by manipulating the Direct Register. With 16-bit X and Y
registers, on the other hand, you can access all of bank zero even if the Direct
Register is left full of goose eggs.

There are four one-byte addressing modes on the 65816. The only
memory bank that can be accessed with these modes is bank zero. Let's let
OPCstand for an operation code that is valid with a given addressing mode. A
capital Dis the 16-bit Direct Register. A small d stands for a one-byte address
following the opcode. The four one-byte modes are:

OPC d D+d “direct” (was “zero-page mode” on £502)
OPC d,X D+d+X “direct indexed with X”

OrPC d,Y D+d+Y “direct indexed with Y”

opPc d,S S +d “stack relative”

The stack relative mode is new and has all kinds of power. It makes it quite
easy to pass variables to a subroutine using the stack, because the
subroutine can dig the variables out of the stack without resorting to
pushing, pulling, or otherwise modifying the stack. For example, here's away
for a calling routine to pass a value to a subroutine, and for the subroutine to
pass a result back to the caller, without using any registers or absolute
memory locations:

PHA Push value on stack.

JSR CALC
PLA Pull result off stack.
etc.

CALC LDA 3,5 LDA 1,S would get the last value pushed
etc. on the stack. The JSR put two bytes there,
STA 3,5 thus we use LDR 3,S.

RTS STA 3,S sends a result back to the caller.

Multiple values could be placed on the stack as long as the subroutine
knew where to look for them with instructions such as LDA 5,5; LDA 7,S; and
soon.

There are seven two-byte addressing modes. These modes can access any
of the 256 possible memory banks. However, they use the contents of the
Data Bank Register, also known as DBR, to specify the bank. Several of these
modes are indirect. In the indirect examples that follow, the address in
parantheses points to the two-byte address that is used for that mode. Note
that in these cases only one address byte actually follows the opcode. This
single byte is used to calculate the pointer. The pointer aims at the two-byte
address the instruction actually uses. Where astands for a two-byte address
following an opcode, the seven two-byte addressing modes are:

0PC a DBR + a “absolute”

0PC a,X DBR + a + X “absolute indexed with X”
0PC a,Y DBR +a +Y “absolute indexed with Y“
OPC (d) DBR + (D + d) “direct indirect”

OPC (d),Y DBR + (D +d) +Y “direct indirect indexed”
0PC (d,X) DBR + (D +d + X) “direct indexed indirect”

OPC (d,S),Y DBR + (S + d) +Y “stack relative indirect indexed”

The (d.S).Y mode allows a subroutine to use a pointer that has been
passed to it within the stack. Another possibility is to push pointers on the
stack rather than using predetermined zero-bank locations. For example:

LDY H@

LDA table.adr
PHA

clear Y
get address of table
push on stack

August 1986

LDA (1,S),Y get first value in table
PLY pull address back off stack and discard

There are four three-byte address modes. Again, some of these modes
actually have only one byte following the opcode. This single byte is used to
calculate a pointer. The pointer is aimed at a three-byte address. These
modes are called indirect long and use brackets rather than parantheses.
Where al stands for a three-byte address following an opcode, the four
modes are:

OPC al al “absolute long”

0PC al,X al + X “absolute long indexed with X~
0OPC [d] (D +d) “direct indirect long”

OPC [d],Y (D+d)+VY “direct indirect long indexed”

There are several other addressing modes, but [better leave something
for Fischer to talk about. On the next page there’s a massive chart I have
constructed that shows all the 65816 opcodes and addressing modes, and
the addressing modes that can be used with each opcode. The numbers
{12,3/4) indicate the total length of an instruction. All 65816 opcodes are
one byte long, The other bytes in an instruction make up the operand. A
single tick mark next to a number means that that opcode/addressing
mode combination first appeared on the 65C02; a double tick mark
indicates the combination is new on the 65816.

Study the chart for awhile, then read Fischer's article, then study the chart
some more. The impressive thing is how everything we've learned using the
6502 can be leveraged into knowledge about the 65816. Knowing how to
program the 6502 is the real pre-boot to the 65816. I'm sure we'll be talking
about this chip much more in the future. I hope you find it as fascinating as |

Introduction to the 65802/65816

Copyright 1986 by Michae!l A. Fischer

The 65816 (“sixty-five-eight-sixteen”) is a microprocessor that is an
upwardly compatible member of the 65xxx family of microprocessors. It can
run programs that were written to run on a 6502/65C02. It is not a
downwardly compatible chip, however —programs written to take advantage
of the full power of the 65816, by and large, will not run on a 6502 or 65C02.

The 65816 was developed by the Western Design Center (2166 East Brown
Road, Mesa AZ 85203). Their version of the chip is called a W655C8186. It is
also manufactured by General Telephone and Electronics under a license
from the Western Design Center. The GTE version is called a G655C816.

The chip is an internal 16-bit microprocessor. However, its external data
line is only 8 bits wide, It transmits 16 bits of data by first sending the low 8
bits of data (sometimes called the least significant byte) over the data line
followed by the high 8 bits (sometimes called the most significant byte). This
technique of sending different kinds of information over the same line at
different times is called multiplexing, While the 65816 transmits data in two
8-bit chunks, a programmer needs only to give it one command to transmit a
16-bit chunk of data.

Two new chips. There are actually two flavors of this new 16-bit processor.
The 65802 ("sixty-five-eight-oh-two”) is similar to the 65816 in that it handles
16-bit data. It has, however, a 16-bit address line, which means it can directly
address only 65,536 bytes— the same as the 6502/65C02. By contrast, the
65816 can work with either 16-bit or 24-bit addresses, permitting it to
address up to 16 megabytes.

When using its 24-bit addressing capability, the 65816 multiplexes the
upper 8 bits of the address on the data bus while it puts the lower 16 bits on
the address bus. When using 16-bit addressing, the 65816 uses the address
bus alone.

At first glance it would seem that there is little reason for the existence of
the 65802, since the 65816 can do everything it can do and address up to 16
meqabytes of memory besides. The advantage of the 65802 is that it is "pin

1patible” with the 6502/65C02. This means that each pin on the 65802
» performs the same function as the similarly placed pin on the 6502/
:02—in other words, a 65802 can be placed in the same socket on an
le Ile as the 6502/65C02 and give you the advantage of the extended
2mbly language instruction set. This will only be an advantage to those
+do assembly language programming. A 65816 will not work if placed in

._6502/65C02 slot on an Appie lle.

From now on the term "65816," as used in this article, also includes the
65802 except in discussions of 24-bit addressing and other areas where the

Open-Apple 2.51

context makes it clear that only the 65816 is being discussed.

Emulation mode. How does the 65816 accomplish its magic of working
as a 6502, 65C02 and a 658167 The chip can run in either native mode or
emulation mode. In emulation mode it responds to 6502 commands nearly
the same as a 6502. The important operational differences from a standard
6502/65C02 are:

1. All 65816 operation codes and addressing modes function, although
the upper 8 bits of 24-bit addresses are ignored. Programs that use opcodes
that were undefined on the 6502/65C02 will be sorry on the 65816,

2. There is a second accumulator, known as the B register. The only way to
use this register is to exchange its contents with the A register by means of
the XBA (eXchange B and A registers) command. The command is also
known as the SWA (SWAp) command.

3. The Stack Pointer in the 6502/65C02 is an 8-bit register that
permanently points to an address on page one of memory (from $0100 -
$01FF). The value in the pointer is between $00 and $FF. The 65816's Stack
Pointer is a 16-bit register that can point to any address between $0000 and
$FFFF. While the 65816 Stack Pointer in emulation mode normally works
with stack values between $0100 and $01FF, several different operations can
increment or decrement the Stack Pointer beyond this range when
transferring more than one byte of data. All of the operations that can do this
are new to the 65816 and would not normally be used in emulation mode,
however.

4. The Direct Register is a 16-bit register that is new to the 65xxx family

with the 65816. As long as its value is $0000 it has no effect on emulation
mode operation with 6502/65C02 commands. However, if it is set to values
other than zero it can have a profound effect on emulation mode because it
effectively moves page zero elsewhere. It is extremely important that
programs that modify the Direct Register clear it back to zero before quitting,

5. The TSC command, new with the 65816, transfers the contents of the
Stack Pointer to the C register (a new name for the A register when it’s in 16-
bit mode). However, in emulation mode (as in native mode), TSC transfers
not only the lower 8 bits of the Stack Pointer to the accumulator, it also
transfers the upper 8 bits (permanently set to $01 in emulation mode) to the
B register. This effect is only significant if you are storing a value in the B
register.

Native mode. That's enough emulation. Now let’s look at the architecture
of the 65816 in native mode. First a general description. The 65816 contains
the following registers:

1. An accumulator that can be configured as either a 16-bit accumulator
{(known as C or A) or as two 8bit accumulators (known as A and B).
Configuration takes place by placing a 1 (for 8-bit mode) or a 0 (for 16-bit
mode) in a status bit (known as the M bit) in the 65816's processor Status
Register. (More on that later.)

2. Two index registers, called X and Y. The registers can be configured as
either 16- or 8-bit registers by placing a 1 (for 8-bit mode) or a G (for 16-bit
mode) in the new Xbit of the Status Register.

3. A16-bit Stack Pointer that permits the setting of the stack anywhere in
the first bank of memory (locations $000000-$00FFFF),

4. A16-bit Program Counter that holds the address of the next command,

5. A 16-bit Direct Register that permits the addressing of memory
anywhere in the first bank of memory faster than addressing memory
located elsewhere.

6. A Status Register consisting of 9 bits, 8 of which are directly accessible.
This register is discussed in greater detail below.

7. There are two 8-bit registers in the 65816 that give it the capacity for full
24-bit addressing. These two registers are also present in the 65802 but they
have no effect on the actual address since that processor is restricted to 16-
bit addressing. The Data Bank Register, which can hold the upper 8 bits of a
24-bit data address, is used only in certain long addressing modes
discussed later in this article. The Program Bank Register is used to hold the
upper 8 bits of the address of the next program command, Setting the
Program Bank Register is restricted to a very few commands, as discussed
below.

The Status Register. As discussed earlier, the Status Register is a
collection of various bits. These bits consist of some mode-select bits
{which, for instance, determine whether mathematical operations take place
in binary or decimal mode), and some status flags that indicate what
occurred as the result of some recent operation. Some of these bits are
unchanged from the 6502/65C02. These include:

1. The carry (C) bit, a status flag, which indicates whether the latest
arithmetic or logical command resulted in a carry out of the eighth or
sixteenth bit.

2.52 Open-Apple Yol. 2, No. 8

65802/65816 DPERATIONS AND ADDRESSING MODES

The numbers 1,2,3,4 indicate the total length of the instruction and its operand in bytes. Combinations marked ° first appeared on the 65C@2, “ on the 65816.

bank access notes-->

bank @ only all banks all banks all banks all banks see current bank only
DBR not used DBR + 2-byte adr 3-byte adr DBR + 2-byte adr 3-byte adr bluw can’t change PBR
addressing modes =~ (ORSHESESIECUSSRERESY RPESSHRSRESEER RRERARESES SSRERERSScSceResRERSRo-n SHRSeRERes S5E SEsEEsreRsmEssssReRR
A i s] d d,Xx d,Y d5 a a,X a,¥ al al,X (d) (d),Y (d,X) (d,5),Y [d] [d].Y xyc r rl () (a,X)
ARITHMETHIC, LOGICAL, COMPARISON, AND MEMORY ACCESS COMMANDS
LDA/ADC/SBC/CMP 2137 2 2 27 3 3 3 4" 4” 2’ 2 2 2” 2" 2"
AND/ORA/EOR 2/3" 2 2 2 3 3 3 4 4 202 2 2" 22
STA 2 2 2" 3 3 3 4” 4 2’ 2 2 2° 2" 2
BIT 2'/3" 2 2 3 ¥
ASL/LSR 1 2 2 3 3
ROL/ROR 1 2 2 3 3
INC/DEC 1’ 2 2 3 3
TSB/TRB 2 3
LDX 2137 2 2 3 3 Immediate mode commands require 2- or 3-byte operands depending on
LDy 213" 2 2 3 3 whether the register being used is set for 8 or 16 bits.
STX 2 3
STY 2 2 3
cpx/cry 2/3 2 a
INX/DEX/INY/DEY 1
§12Z 2 2’ ¥ 3’ Stores a zero in memory without changing the A Register.
MVP/MVN Move block: R=size of block-1, X=source, Y=dest, xyc=source bank, dest bank. 3

COMMANDS THAT
TAX/TAY/TXA/TYA 1

TXS/TSX 1

TXY/TYX 1r

TCS/TSC 1” C indicates the A Register in 16-bit mode.

TCD/TOC 1* D indicates the new Direct Register.

XBA 1 B is the high 8 bits of the 16-bit A Register. A indicates the low B bits. XBA moves the contents of A to B and B to A.
COMMANDS THAT CHANGE THE STATUS REGISTER (also known as P)

CLC/SEC 1 N is sign l=neg 2 is zero l=true

CLD/SED 1 6502 mode NV1BDIZC 1 is unused; B is break,l=true V is overflow l=true C is carry l=true

CLI/SEI 1 65802/65616 mode NV MXDI ZC M is A-reg width, 1=8 bits, @=16 bits D is BCD bit 1=true

CLV 1 X is X & Y width, 1=8 bits, 0=16 bits I is IRQ bit 1=interrupts disabled

REP/SEP 2" REP clears, SEP sets the bits indicated--e.g. REP %00000001 is the same as CLC.

XCE 1” XCE exchanges Carry Bit with Emulation Bit. E=1 for 6562 mode, E=@ for B02/816 mode.
COMMANDS THAT WRITE TO AND READ FROM THE STARCK

PHA/PLA 1

PHP/PLP 1

PHX/PLX/PHY/PLY 1

PHD/PLD 1” D is the new Direct Register

PHB/PLB 1" B is the new Data Bank Register

PHK 1 K is the new Program Bank Register--note that this register can only be read, not written to.

PER < PER is Push Immediate--the 2-byte operand is pushed on the stack.

PEI 2" PEI is Push Indirect--the l-byte operand is added to the Direct Reg; the 2-byte value at that address is pushed on the stack.

PER 3¢ PER is Push Relative--the 2-byte operand is added to the Program Counter and the result is pushed on the stack.
PROGRAM CONTROL COMMANOS

BPL/BMI 2

BVC/BVS All branches except BRL can go forward 129 bytes or backward 126 bytes. 2

BNE/BEQ BRL can go forward 32770 bytes or backwards 32765 bytes. However, all 2

BCC/BCS branches stay within a single bank. They always wrap from $FFFF to 2

BRA $0000 within the current bank. 2’

BRL 3”

JSR 3 3

JrpP 3 3 3¢

RTS/RTIL 1

JSL 4"

JML 4" 3

RTL 1 Only 5 commands can change the contents of the Program Bank Register--JSL al, JML al, JML (a), RTL and RTI.

BRK 1/2”
OTHER COMMANDS

NOP 1

STP I Stop until reset.

WAI 1° Wait until interrupt.

coP 2” For use with a co-processor.

WDM 1” Reserved for activating future 32-bit chip.

Use MVP if destdsource and blocks overlap. Use MVN if sourceddest. If no overlap, either command is ok.

TRANSFER DATA FROM REGISTER-TO-REGISTER

August 1986

2. The zero (Z) bit, a status flag, which indicates if the result of the last
operation of any kind was zero.

3. The interrupt disable (I} bit, a mode-select bit, which can enable or
disable interrupt requests.

4. The decimal (D) bit, a mode-select bit, which determines if the
mathematical operations will occur in binary or binary-coded-decimal.

5. The overflow (V) bit, a status flag, which indicates whether an overflow
resulted from the most recent mathematical operation. An overflow is
defined as a carry from bit 14 to 15 (or from bit 6 to 7 in 8-bit mode).

6. The negative (N) bit, a status flag, which indicates whether there was a
negative result from the most recent mathematical or logical operation. A
negative result is defined as a value with the most significant bit (bit 15in 16
bit mode) set to one.

One bit familiar to 6502/65C02 programmiers that is not present in the
65816 native mode Status Register is the break (B) bit. It is present, however,
when the 65816 is in emulation mode. This status flag indicates whether the
cause of an interrupt was hardware or software. This bit is not really needed
with the 65816, as we'll see later, in the discussion on interrupts.

Three bits of the Status Register are new with the 65816. These are:

1. The index register (X) bit, a mode-select bit, which determines whether
the data width of the X and Y index registers is 8 (X=1) or 16 (X=0) bits.

2. The memory select (M) bit, a mode-select bit, which determines whether
the data width of the accumulator and commands such as STZ is 8 (M=1) or
16 (M=0) bits.

3. The emulation (E) bit, a mode-select bit, which determines whether the
65816 is in emulation (E=1) or native (E=0) mode.

All of the 6502/65C02 mode-select bits and some of the 6502/65C02
status flags can be set and cleared by individual commands in either native
or emulation mode. For example, the carry bit can be set by the SEC (for SEt
Carry bit) command and the interrupt disable bit can be cleared by the CLI
(for CLear Interrupt disable) command. But there are some bits for which
there are no set or clear commands.

None of the new 65816 status bits have their own set or clear commands.
Instead there are two new commands, REP (for REset Processor status bits)
and SEP (for SEt Processor status bits), which can clear or set any
combination of the Status Register's bits except the emulation bit.

The emulation bit is not actually one of the 8 bits that make up the Status
Register. Instead, it conceptually hides behind the carry bit and can be set or
cleared by a single command, XCE (for eXchange Carry and Emulation bits).
The XCE command swaps the values in the carry and emulation bits, Thus to
set the emulation bit (and place the 65816 into emulation mode) you would
give the two commands SEC (SEt Carry bit) and XCE, resulting in a set
emulation bit. To clear the emulation bit (and place the 65816 into native
mode) you would give the two commands CLC (CLear Carry bit) and XCE,
resulting in a cleared emulation bit.

Interrupts. An interrupt is a signal to the microprocessor that tels it to
stop what it's doing and attend to something else. The 6502/65C02
supports four types of interrupts; the 65816 supports six, All six are
supported in both emulation and native modes. For each type of interrupt
there is a fixed location in memory called an interrupt vector, which points to
aroutine for handling that type of interrupt.

Of the 6502's four interrupts, three (IRQ, interrupt request; NMI, non-
maskable interrupt; and Reset) are generated by electronic signals from
other hardware and the fourth is caused by the BRK (break) command. BRK
and IRQ share an interrupt vector—the 6502 (and the 65816 in emulation
mode) differentiates between them with the Status Register’s B bit.

In 65816 native mode, on the other hand, BRK and IRQ are separated so
that a BRK bit is no longer necessary. One of the two new interrupts is Abort,
which can be used by special types of hardware to fool the 65816 into
thinking there is more RAM in the computer than is really there. The other is
a software interrupt called COP (co-processor), which allows a program to
call special-purpose auxiliary processors. Here is a complete list of the
interrupt vectors the 65816 supports:

65816 interrupt vectors (all vectors are in bank @, page $FF)

native mode
vectors

emulation mode
vectors

IRQ

Reset

FE-F
FC-D

EE-F
reserved (uses emulation vector)

Open-Apple 2.53
NMI FA-B ER-B
Abort F8-9 £8-9 for implementing virtual memory
BRK reserved (uses IRQ) E6-7
coP F4-5 E4-5 for implementing co-praocessing

The effect of a reset in the 65816 is to set the Direct, Data Bank, Program
Bank, X high and Y high Registers to zero; set the Stack Pointer high to $01;
clear the D bitand set the M, X, | and E bits in the Status Register. This puts the
65816 in emulation mode —for this reason there is no separate native mode
reset vector.

Let's take a BRK. The BRK instruction is considered a single byte
instruction in the 6502/65C02. The 65816, by contrast, treats both the BRK
and the COP instructions as two-byte commands. The byte following the
command itself serves different purposes for the BRK and COP instructions:

1. When BRK is used in debugging, a common use, it is often inserted in
place of a 2-byte instruction. The BRK code itself (300} is placed over the first
byte and the second byte is skipped. A return from interrupt (RTI) instruction
will pick up at the proper location following a two-byte BRK instruction.

2. The 1-byte operand following the COP code is known as a signature byte.
This byte can be used to pass parameters to the interrupt-handling routine
and thus to the co-processor. Signature byte values $80-$FF are reserved
and $00-$7F are available for programmer use.

There are two special-purpose software instructions that also work with
interrupts. The STP (SToP the clock) and WAI (WAit for Interrupt) commands
place the 65816 into a state of hibernation until a hardware interrupt
resumes normal operation. The STP command's wait state can be terminated
only by a reset. The WAl command’s wait state can be terminated by a reset,
NMI, or IRQ.

Addressing modes. An assembly language program on most micropro-
cessors, including all members of the 65xxx family, consists of commands
and, in most cases, data upon which the commands operate. The data
sometimes follows the command in the program; other times the information
following the command shows where in the computer’'s memory the data is
located. The various methods by which the microprocessor finds the
information are referred to as addressing modes.

The 6502 has 14 addressing modes. The 65C02 has all 14 of these modes
plus two additional ones. All 16 of these modes are also found on the 65816,
although five ofthem — the zero-page addressing modes —are modified. On
the 6502/65C02, the zero-page addressing modes use a single-byte value
that is the location of the data on page zero ($0000-$00FF). On the 65816,
the zero-page addressing modes are called direct modes. Direct addressing
consists of a single-byte value that follows the instruction. The value is added
to the 16-bit value in the Direct Register and the result is an address in bank
zero ($000000-$00FFFF).

In emulation mode, if the low byte of the Direct Register is zero, direct page
operations take place on the page pointed to by the high byte of the Direct
Register. This is known as a relocatable zero page. Operations that extend
beyond the boundary of the page will wrap around inside the page. For
example, LDA $F0 X, with X=$20 and D=$0800, will access byte $0810.

If the low byte of the Direct Register is a value other than zero (in other
words, if the relocated zero page doesn't lie on a page boundary), on the
other hand, operations that extend beyond the boundary of the page will
NOT wrap. For example, LDA $F0,X, with X=$20 and D=$0880 will access byte
$0990. The main cause of a non-zero direct register in emulation mode is a
failure to clear it to zero before leaving native mode.

The 65816 adds eight new forms of addressing to the ones that already
existed under the 65C02. Many of the added modes are simply long forms of
existing 6502 modes. A long form of addressing is 3 bytes long, utilizing the
24-bit addressing capabilities of the 65816. The long forms of addressing
include:

1. Absolute long

2. Direct indirect long indexed

3. Absolute long indexed with X (there is no Absolute long indexed with Y)

4. Direct indirect long

An additional special form of long addressing is the program counter
relative long mode. On the 6502/65C02 there are several branch instructions,
using a one-byte displacement, which can modify the location of program
execution up to 129 bytes ahead of the present location or 126 bytes behind.

2.54 OpendApple

With the program counter relative long mode, there is a two-byte displacement.
This results in a change in the execution address of as many as 32,770 bytes
ahead or 32,765 bytes behind. Only one branch instruction (BRL) supports
this addressing mode, however, and it branches always.

Two additional new addressing modes use the expanded 16-bit stack
pointer for part of the memory address used. The stack relative addressing
mode takes the one-byte value following the command and adds it to the
value in the stack pointer to obtain the actual memory location of the data,
which is always in bank zero of memory. The stack relative indirect indexed
addressing mode takes the one-byte value following the command and adds
it to the value of the Stack Pointer to obtain an address in bank zero. That
address contains a two-byte value that is the lower two bytes of the actual
data address. The Data Bank Register contains the value of the highest byte
of the 24-bit address. The Y Register is used as an index from that address.

The final new addressing mode is used with the new block move
command and is discussed with that command.

Commands. The various instructions that can be given to the 65816 are
known as opcodes or mnemonics. Each instruction consists of a three-letter
abbreviation that somewhat explains the function of the instruction.

There is no universally-agreed upon method of categorizing instructions.
The organization I will use here is loosely based on the Microprocessor
Assembly Language Draft Standard of the IEEE. Differences in the command
sets of the 65xxx family of microprocessors will be discussed within this
organization.

The 6502 has 56 commands and 14 addressing modes that can be
combined into 151 different legitimate instructions. The 65C02 adds 10 new
commands, two new addressing modes, and 29 additional legitimate
combinations. The 65816 adds 26 new commands (for a total of 92), eight
new addressing modes (a total of 24), and 76 new legitimate combinations
(atotal of 256).

Arithmeticlogic instructions. These commands take avalue found in a
specified location and perform either an arithmetic (add, subtract, increment,
or decrement), logical (and, or, or exclusive-or), or shift/rotate operation on
it. The 65816 adds no new instructions that were not already found on the
65C02, although it adds about 30 new command/address mode combinations,
resulting from either the new long or stack relative addressing modes.

ARITHMETIC LDGIC INSTRUCTIONS

6502 65C82 65816
Command Forms Forms Forms function
ADC 8 1 6 add memory to accumulator with carry
AND 8 1 6 AND memory with accumulator
ASL 5 0 '] shift one bit left, memory or accumulator
DEC 4 1 0 decrement memory or accumulator by one
DEX il 0 0 decrement X register by one
DEY 1 [[} decrement Y register by cne
EOR 8 1 6 Exclusive OR memory with accumulator
INC 4 1 [increment memory or accumulator by one
INX 1 0] increment X register by one
INY 1 [’} 2} increment Y register by one
LSR 5 [’ [shift one bit right, memory or accumulator
ORA 8 1 3 OR memory with accumulator
ROL 5 0 [} rotate one bit left, memory or accumulator
ROR 5 [} /] rotate one bit right, memory or accumulator
SBC 8 1 6 subtract memory from accumulator with borrow
TRB 0 2 0 test and reset bit
T5B 0 2 [test and set bit
TOTAL 72 11 30

Branch/Jump instructions. Normally the 65816 executes machine
code in sequentiat order. The branch and jump instructions send the 65816
to anew location in memory for the next instruction. The 65816 adds four of
these program confrol instructions to those available on the 65C02—all of
which result from long addressing modes. These are a long JMP using 24-bit
addressing, a long JSR using 24-bit addressing, a long branch using 16-bit
displacement, and a long return from subroutine using 24-bit addressing,

BRANCH/JUMP INSTRUCTIONS

6502 65002 65816
Command Forms Forms Forms
BCC 1 [} [} branch if carry clear
BCS i Q [} branch if carry set
BEQ 1 4] %] branch if equal
BMI 1 [} 0 branch if minus
BNE i [} [} branch if not equal

Yol.2, No. 8
BpPL 1 0 %] branch if plus
BRA 0 1] branch always
BRL [} 0 1 branch always, lang
BVC 1 0 [} branch if overflow clear
BVS 1 [} [} branch if overflow set
JML] [’ 2 jump, long
JMP 2 1 0 Jump
JSL [’} [} 1 Jump to subroutine, long
JSR 1 [} 1 jump to subroutine
RTI 1 9 0 return from interrupt
RTL 0 [} 1 return from subroutine, long
RTS 1 "] 0 return from subroutine
TOTAL 13 2 4

Data transfer instructions. Perhaps the most commonly used assembly
language instructions are the data transfer commands, which move a value
from one location inside the computer to another. These locations may be in
the computer’s RAM, its ROM, or a 65816 register. The 65816 adds nine new
data transfer instructions. These additional instructions are among the
most significant of the new 65816 commands. They include:

1. The block move commands (MVN and MVP), which move a block of up to
65,536 bytes from any memory location to any other memory location.
Before giving the command, the X Register must contain the lower 16 bits of
the source address, the Y Register must contain the lower 16 bits of the
destination address, and the Accumulator must contain one less than the
number of bytes to be moved. The format of the instruction consists of the
opcode followed by the source bank number (8 bits) and the destination
bank number (8 bits).

2. New inter-register transfer commands, which move data between the
Accumulator and either the Stack Pointer or the Direct Register, and between
the X and Y Registers. Some of these instructions, and the previous inter-
register transfer commands, function differently depending on the setting of
the M and X bits. In general, if the contents of an 8-bit register are transferred
to a 16-bit register, a zero will be placed in the high byte of the 16-bit register.
If a 16-bit register is transferred to an 8-bit register, the high byte will be
lopped off. However, transfers between the Accumulator and Stack Pointer
and between the Accumulator and Direct Register are, with one exception,
always 16-bit transfers (the B register is used for the high byte if A is
configured for 8 bits). The only exception is a transfer of the Accumulator to
the Stack Register in emulation mode, in which case the contents of B will be
disregarded and the high byte of the Stack Pointer will remain $01.

3. Theintra-register transfer command, XBA, which exchanges the value in
the A and B portions of the 16-bit accumulator. Note that the other transfer
commands transfer data from one register to another. At the end of the
transfer both registers hold the same value. This command swaps the
register values. At the end of the exchange the registers hold opposite
values.

DATA TRANSFER INSTRUCTIONS

6502 65002 65816
Command Forms Forms Forms
LDA | 1 6 load accumulator with memory
LDX 5 0 [} load X register with memory
Loy S [} [’ load Y register with memory
MVN 0] 1 move block, negative
MvP 0 [’ 1 move block, positive
STA ? 1 6 store accumulator in memory
STX 3 0 0 store X register in memory
STY | Q /] store Y register in memory
k174 0 4] store zero in memory
TAX 1 9 [} transfer accumulator to X register
TAY 1 0] transfer accumulator to Y register
TCD [’ Q 0 transfer C accumulator to direct register
TCS [}) 1 transfer C accumulator to stack register
TDC [} [’} 1 transfer direct register to C accumulator
TSC @ 9 1 transfer stack register to C accumulator
TSX 1] [} transfer stack register to X register
TXA 1 0 0 transfer X register to accumulator
TXS 1 0 [} transfer X register to stack register
)Y 0 [1 transfer X register to Y register
TYR 1 [} 0 transfer Y register to accumulator
TYX [’ [1 transfer Y register to X register
XBA 0 0 1 exchange B and A accumulators
TOTAL 37 6 21

August 1986

Stack instructions. Some commands either place data on the stack
(called pushing) or remove it from the stack (called pulling). Two new
instructions pull data from the stack into the Data Bank Register (PLB) and
the Direct Register (PLD). Three instructions push the value in registers onto
the stack—PHB (Data Bank Register), PHD (Direct Register) and PHK
(Program Bank Register). Note that there is no pull Program Bank Register
command. The only commands that can change the value in the program
bank register are JSL al, JML al, JML (a), RTL, and RTI.

Three additional stack instructions push data that are not found in 65816
registers. The PEA (Push Effective Address or immediate data) instruction
places the 16-bit value that follows the command onto the stack. The PEI
(Push Effective Indirect address) instruction adds the value of the direct
register to the one-byte value following the instruction to obtain an address.
[t then places the 16-bit value found at that address on the stack.

Potentially the most significant of the new 65816 instructions is the PER
(Push Effective program counter Relative data) command. This instruction
adds the value of the two-byte operand that follows to the current value of the
program counter and places the resulting value on the stack. This
instruction provides the potential of true position-independent code that
doesn't require the tricks needed with the 6502/65C02.

STACK INSTRUCTIONS

6502 65C02 65816
Command Forms Forms Forms
PEA 0 [’ 1
PEI1
PER
PHA
PHB
PHD
PHK
PHP
PHX
PHY
PLA
PLB
PLD
PLP
PLX
PLY

push effective absolute address on stack
push effective indirect address on stack
push effective PC relative adr on stack
push accumulator on stack

push data bank register on stack

push direct register on stack

push program bank register on stack

push status register on stack

push X register on stack

push Y register on stack

pull accumulator from stack

pull data bank register from stack

pull direct register from stack

pull status register from stack

pull X register from stack

pull Y register from stack

'
E I~~~ S R . K BB I
R I I =T SR =S SO P -

OO - ®® 0O e

TOTAL

EN
EN
@

Status instructions. Three new commands permit modification of the
processor status byte. These are REP, SEP and XCE. They were discussed
earlier in this article.

STATUS INSTRUCTIONS

6502 65C02 65816

Command Forms Farms Forms

CLC 1 0 ") clear carry flag

CLD g [} [} clear decimal mode

CLI 1] 0 clear interrupt disable bit

CLV 1 ‘] [} clear overflow flag

REP 0 0 1 reset status bits

SEC 1 0 0 set carry flag

SED 1 (] 0 set decimal mode

SEI 1 '} 0 set interrupt disable status

SEP 0 0 1 set status bits

XCE 0 0 1 exchange carry and emulation bits
TOTAL 7 0 3

Test instructions. No new commands are added to this category by the
65816. However six new addressing mode/command combinations were
added to the CMP command, resulting from the new long and stack relative
modes.

TEST INSTRUCTIONS

6502 65C02 65816
Command Forms Forms Forms
BIT 2 3] bit test
cMP 8 1 6 compare memory and accumulator
CPX 3 0 0 compare memory and X register
cey 3 0 0 compare memory and Y register
TOTAL 16 4 6

Open-Apple 2.55

Miscellaneous instructions. Some commands defy categorization. The
65816 adds two new instructions. It also includes two relatively unknown
commands that appear only on the Western Design Center version of the
65C02, WAI (wait for interrupt) and STP (stop until Reset). The new
instructions are COP, which is discussed in this article under interrupts, and
WDM, which is a reserved instruction that will be used in the future to provide
32-bit floating point math and data operations on the 65832 processor,
which Western Design is now working on. This chip will support all features
of, and will be pin-compatible with, the 65816.

MISCELLANEOUS INSTRUCTIONS

6502 65C02 65816

Command Forms Forms Forms

BRK 1 0 0 force break

CopP [} 0 1 coprocessor

NOP 1 0 0 no operation

STP 0 1 0 stop the clock

WAL 1 [’} wait for interrupt

WOM [’ 0 1 reserved for 65832
TOTAL 2 2 2

Assemblers, There are three Apple [l assemblers that can handle 65816
code:

1. Merlin Prois a macro assembler that runs on the Apple Ile and lic. Two
versions come in one package; one version runs under DOS 3.3 and the
other under ProDOS. Other goodies with the package include a disassembler
to aid you in building source code files from object code, a linker to generate
relocatable code, and a commented, disassembled source code listing of
the Applesoft interpreter.

Merlin Pro is the easiest of the three assemblers to use and is the least
esoteric in its pseudo opcodes. Its major disadvantage is that it presently
does not support 24-bit addressing directly, although you can write a macro
to accomplish the same thing, Glen Bredon, the author of Merlin, has added
24-bit addressing to a new version of the assembler presently in beta test.

The publisher of Merlin Pro is Roger Wagner Publishing, Inc., 10761
Woodside Avenue, Suite E, Santee, CA 92071 (619) 562-3670. It sells for
$99.95.

2. Orca/M (try reading it backward) is the most powerful of the 65816
assemblers. It handles 24-bit addressing and includes a linker that creates
relocatable code. It also has a disassembler and a macro library with
routines for mathematics, input and output, graphics, and other miscellaneous
functions. Orca/M adheres most closely to the assembler specifications of
the Westemn Design Center, creators of the 65816.

The power of Orca/M also results in its complexity. Its use of pseudo
opcodes, particularly for macros and conditional assembly, is the least like
the assemblers common to the Apple world. Indeed, Orca/M comes with an
operating system, a shell around ProDOS, that allows the adding of functions
to the assembly environment. It is a struggle to get used to; whether it is
worth the struggle depends on whether you need its power.

The publisher of Orca/Mis The Byte Works, Inc., 8000 Wagon Mound Drive
NW, Albuquerque, NM 07120 (505) 898-8183. It sells for $79.95.

3. The S-C Macro Assembler comes with an assembler that can handle
6502, 65C02, Sweet-16 and 65816 code with full 24-bit addressing. The
editor is nearly as easy to use as the Merlin Pro editor. Its macro, conditional
assembler, and other pseudo opcodes are easy to understand aithough a bit
different than the Apple "standard.” It comes in eithera DOS 3.3 or aProDOS
version (or you can purchase both versions together at a substantial
discount).

A significant advantage to the S-C Macro Assembler is that it is part of a
system. Various add-on programs are available including a cross-reference
utility, a full screen editor, a commented Applesoft disassembly, and even
cross assemblers to create 6800, 6809, 68000, Z-80, and PDP-11 code. You
can also purchase the source code for the assembler itself, a commitment to
open programming rarely seen.

The biggest advantage of the system, though, is a monthly periodical
distributed and largely written by the assembler’s creator, Bob Sander-
Cederlof. Apple Assembly Lines is the only publication today canrying any
significant 65816 assembly language articles. The assembler used for
program listing in Apple Assembly Lines is the S-C Assembler,

The publisher of the S-C Macro Assembler is S-C Software Corporation,
2331 Gus Thomasson, Suite 125, P.O. Box 280300, Dallas, TX 75228 (214)
324-2050. It sells for $100 for either the DOS 3.3 or ProDOS version and $120
for both versions.

2.56 Open-Apple

Hardware. There are several different paths you can follow to put either a
65802 or a 65816 in your Apple.

1. The least expensive way is to remove the 6502/65C02 and replace it
with a 65802 chip. This method restricts you to 16-bit addressing. The chip is
available from S-C Software for $50.

2. Apple Ile owners can use an Apple16 65816 Co-Processor Board. This
board fits into any available slot of the Apple Iie and has a 65816 chip with
256K of linearly addressable memory. Of course you will have to create you
own routines to view the contents of memory above the first 64K as the Apple
Ile Monitor only works on the first 64K bank. The board is available from the
Com Log Corporation, 11056 . 23rd Drive, #104, Phoenix, AZ 85029 (602)
248-0769. It costs $395.00.

3. Apple Ile owners can also purchase a card that fits onto the motherboard,
not into an expansion slot. Checkmate Technology, Inc., 509 South Rockford
Drive, Tempe, AZ 85281 (602) 966-5802, makes a MultiRAM EX 65816 Co-
Processor Card. A similar card is also made by Applied Engineering, P.O. Box
798, Carrollton, TX 75006 (214) 241-6060. For both cards, installation
consists of removing the 6502/65C02 and the MMU chips from your Apple
Ile motherboard, placing the MMU chip onto the 65816 card, and placing the
pins on the 65816 card into the now empty 6502/65C02 and MMU sockets.
Each card can also be attached, via a supplied cable, to the respective
expanded 80 column card (Multiram Ile by Checkmate Technology and
Ramworks Il by Applied Engineering) to permit linear addressing of 256K
and more of memory. The Applied Engineering board can also connect to

Vol. 2, No. 8

the Applied Engineering RamFactor standard slot memory expansion board.
Prices: MultiRam EX, $189; MultiRam lle, $159.95 (with 64K); Applied
Engineering 65C816 16 Bit Card, $159; RamWorks 1I, $179 (with 64K);
RamPFactor, $239 (with 256K).

4. Checkmate Technology also makes a card similar to the MultiRAM EX
that works with their CX board, an Apple Ilc memory expansion system. This
is the only method by which Apple Ilc owners can put a 65816 in their
computer. Prices: 65C816 upgrade for CX, $119.95; CX board, $199.95 (with
256K).

5. There is a "16-bit option” advertised for the Applied Engineering
Transwarp fast processor board for the Apple lle. This 16-bit option is a
65802, not a 65816. Prices: 16-bit 65802 upgrade, $89; Transwarp, $279.

Books. There are four books announced on assembly language program-
ming for the 65816. They are listed here in alphabetical order. No attempt is
made at reviewing these books both because not all are currently available
and because I might be considered somewhat biased on this subject.

1. 65816/65802 Assembly Language Programming by Michael Fischer,
published by Osborne/McGraw-Hill. Currently available. $19.95.

2. Programming the 65816 by David Eyes and Ron Lichty, to be published
by Brady Communications. Not currently available. $22.95.

3. Programming the 65816 by Willlam Labiak, published by Sybex.
Currently available. $22.95.

4, The Handbook: 6502, 65C02 and 65816 by Stephen Hendrix, published
by Weber Systems. Availability unknown. $17.95.

Ask

(ortell)
Uncle

DOS

Whoa, looks like Fischer and I got so long-winded
there’s almost no space left this month for letters.
Next month Uncle DOS will get at least six pages to
make up for the shortage this month, however, so
send him something good today.

Hard copy

I am very interested in the hardware side of the
Apple and was wondering if there are any newsletters
or magazines devoted to Apple hardware?

Robert T. Muir
Ferndale, Calif.

I don't know of any newsletters or magazines
devoted completely to Apple hardware. 1 assume
you have read the two books Understanding the
Apple Il and Understanding the Apple Ife, by Jim
Sather ($22.95 and $24.95 from Quality Software,
21610 Lassen St #7, Chatsworth, CA 91311). These
are to Apple hardware what the old and new testa-
ments are to Christian theology.

AppleWorks DIFficulties

I recently attempted to move a lengthy VisiFile data
base to AppleWorks, using the DIF conversion program
provided by VisiFile, Apple’'s CONVERT program, and
the AppleWorks "make a new file from a DIF file”
option. This didn't work—AppleWorks aborted the
read function immediately after displaying the "Getting
this file” message.

[developed a really ugly work-around by treating
the DIF file as a text file and editing out all sorts of
marbage (you wouldn't want to know the details), but

would appreciate any tips on why the prescribed
procedure did not work and how it might be fixed.

Douglas J. Sietsema

Culver City, Calif.

I don't know anything about VisiFile, but I think [
know enough about DIF files and about AppleWorks
to answer your question. DIF files consist of two
major parts, a header section and a data section.
Each item in the header section is three lines long;
each item inthe data section is two lines long. This is
the garbage you saw when you loaded the file into
the AppleWorks word processor as an ASCII text file.

The header section of a DIF file looks something
like this:

TABLE
8,1

VECTORS
2,2

TUPLES
0,26

DATA
0,0

This is the minimum amount of information youll
find in a DIF file header. The protocol allows programs
that create DIF files, such as VisiFile, to insert
additional header items between the 3-line TABLE
item and the 3-line DATA item. The protocol says that
programs reading DIF files should ignore these extra
Dieces of information if they don't recognize them.

AppleWorks, however, refuses to read DIF files that
have anything in the header other than the minimum
amount of information. This is a bug that should be
fixed.

In the meantime, the solution is to load the DIF file
into the word processor (tell the word processor it's
a standard ASCII text file, not a DIF file, just as you
did before) and delete all the 3-line items in the
header except the four shown above. Then print the
file back into an ASCII text file. This new text file
really has the intemal format of a DIF file, of course,
and will load directly into the spreadsheet or data
base by way of the “make a new file from a DIF file”
route.

I wrote up a complete description of the internal

format of DIF files, as well as Applesoft subroutines
for reading and writing them, in the February 1984
Softalk, page 65, if you'd like to find out what all that
garbage was.

Open-Apple
B

is written, edited, published, and

© Copyright 1986 by
Tom Weishaar

Business Consuitant Richard Barger
Technical Consultant Dennis Doms
Circulation Manager Sally Tally

Most rights reserved. All programs published in Open-Apple are
public domain and may be copied and distributed without charge
{most are available in the MAUG library on CompuServe). Apple user
?roups and significant others may obtain permission to reprint articles
rom time to time by specific written request. Requests and other
editorial material, including letters to Uncle DOS, should be sentto:

Ogen-Apple
P.O. Box 7651
Overland Park, Kansas 66207 U.S.A.

ISSN 0885-4017. Published monthly since January 1985. World-wide
prices (in U.S. dollars; airmail delivery included at no additional
charge): $24 for 1 year; $44 for 2 years; $60 for 3 years. All back issues
are currently available for $2 each; a bound, indexed edition of Velume
1 is $14.95. Index mailed with the February issue. Please send all
subscription-related correspondence to:

Open-Apple
P.O. Box 6331

Syracuse,N.Y. 13217 U.S.A.

Subscribers in Australia and New Zealand should send subscription
correspondence o Openvngrlc. ¢/o Cybernetic Research Ltd, 576
Malvern Road, Prahran, Vic. 3181, AUSTRALIA.

Open-Appleis available on disk for speech synthesizer users from
?gggch Enterprises, P.O. Box 7986, Houston, Texas 77270 (713-461-

Unlike most commerical software, Open-Apple is sold in an

unprotected format for your convenience. You are encourgaged to
make back-up archival copies or easy-to-read enlarged copies for
your own use without charge. You may also copy Open-Apple for
distribution to others. The distribution fee is 15 cents per page per
copy distributed.
WARRANTY AND LIMITATION OF LIABILITY. | warrant that most of
the information in Open-Appleis useful and correct, aithough drivel
and mistakes are included from time to time, usually unintentionally.
Unsatisified subscribers may return issues within 180 days of delivery
for a full refund. Please include a note from your parents or children
confirming that all archival copies have been destroyed. The untuililled
portion of any paid subscription will be refunded on request. MY
LIABILTY FOR ERRORS AND OMISSIONS IS LIMITED TO THIS
PUBLICATION'S PURCHASE PRICE. In no case shall | or my
contributors be tiable for any incidental or consequential damages,
nor for any damages in excess of the fees paid by a subscriber.

Open-Appleis neither affiliated with nor responsible for the debis of
épple ?omputer, Inc.; “tinaja questing” is a trademark of Don
ancaster.

Source Mail: TCF238

CompuServe: 70120,202

